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Abstract
Self-selection into prospective cohort studies and loss to follow-up can cause biased exposure-outcome association estimates. 
Previous investigations illustrated that such biases can be small in large prospective cohort studies. The structural approach 
to selection bias shows that general statements about bias are not possible for studies that investigate multiple exposures and 
outcomes, and that inverse probability of participation weighting (IPPW) but not adjustment for participation predictors 
generally reduces bias from self-selection and loss to follow-up. We propose to substantiate assumptions in structural mod-
els of selection bias through calculation of genetic correlations coefficients between participation predictors, outcome, and 
exposure, and to estimate a lower bound for bias due to self-selection and loss to follow-up by comparing effect estimates 
from IPP weighted and unweighted analyses. This study used data from the Norwegian Mother and Child Cohort Study and 
the Medical Birth Registry of Norway. Using the example of risk factors for ADHD, we find that genetic correlations between 
participation predictors, exposures, and outcome suggest the presence of bias. The comparison of exposure-outcome associa-
tions from regressions with and without IPPW revealed meaningful deviations. Assessment of selection bias for entire multi-
exposure multi-outcome cohort studies is not possible. Instead, it has to be assessed and controlled on a case-by-case basis.

Keywords  Bias · Self selection · Loss to follow up · Cohort study · Inverse probability weighting · Bayesian estimation · 
Directed acyclic graphs · ADHD

Introduction

The complex etiology of many disorders and ethical consid-
erations often preclude experimental approaches to identi-
fying their causes [1]. When controlled experimentation is 
not possible, cohort studies can provide valuable insights 
[2]. Prospective cohort studies are particularly valuable, 
because participants enroll before the outcome of inter-
est has occurred. However, participation in cohort studies 
depends on socio-economic factors [3]. When the study 
sample is not a random sample from the population, selec-
tion bias is possible [4]. Hence, recent research investigated 

bias in exposure-outcome association estimates from large 
population-based prospective cohort studies empirically, by 
comparing associations in the study sample with those in 
the target population [5–8]. A related study assessed bias 
due to loss to follow-up by comparing association estimates 
from inclusion and follow-up participants [9]. This empirical 
approach to detecting selection bias can only evaluate bias 
when exposure and outcome data for the complete target 
population is available.

The structural approach to selection bias uses directed 
acyclic graphs (DAGs [10]) to explain the manifestation of 
bias. It requires information about participation predictors, 
for example age and education, and their relationship with 
exposure and outcome. Selection bias manifests if partici-
pation or participation predictors are colliders on an open 
path between exposure and outcome [11]. Hernán et al. 
[4] showed that even when there is no direct path between 
participation predictors and outcome, common unobserved 
causes of participation predictors and outcome can lead to 
selection bias. This manifests if, in addition, the exposure 
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causes participation or if it causes or shares a common cause 
with predictors of participation (see Fig. 1a, b). Selection 
bias can also manifest due to effect modification, i.e. when 
population subgroups have varying participation rates and 
varying exposure-outcome associations (see Fig. 1c).

Figure 1 highlights that bias due to self-selection and loss 
to follow-up depends on the relationship between a specific 
exposure, outcome, participation predictors, and potential 
unobserved causes. Therefore, the presence or absence of 
bias cannot be determined for an entire cohort study that 
measures different exposures and outcomes. Instead, it has 
to be determined for each exposure-outcome-pair. Acquir-
ing information about associations that determine selection 
bias is non-trivial, because unobserved common causes of 
participation predictors and outcome are central.

Common causes can be of environmental [12, 13] or 
genetic nature. Without presuming that common genetic 
causes carry more weight than environmental factors, we 
propose to use the more widely reported genetic correlation 

coefficients (rG) from twin [14] and genome wide associa-
tion studies [15] as an indicator for common unobserved 
causes. For instance, Bulik-Sullivan et al. [16] report single 
nucleotide polymorphism (SNP) based genetic correlations 
of rGSNP = 0.01 and 0.731 between education in adulthood 
and birth-weight or childhood IQ, respectively. Hence, if 
one uses a study sample that over-represents well-educated 
mothers to examine associations of maternal depression with 
birth weight or childhood IQ, the latter association is more 
likely biased.

The structural approach does not provide an estimate of 
selection bias–magnitude. Still, the comparison of asso-
ciation estimates obtained with and without correction for 
self-selection can serve as a lower bound estimate of bias. 
Selection bias can be reduced by adjusting for participation 
predictors (adjusted regression, AR), by direct standardiza-
tion with respect to participation predictors (DS [17]) or 
multilevel regression and poststratification (MRP [18]), and 
by weighting participants according to the inverse participa-
tion-probability (IPPW [19]). While IPPW reduces all types 
of selection bias displayed in Fig. 1, provided participation 
can be predicted well, DS/MRP reduce bias due to effect 
modification and structural bias when the exposure does not 
cause or share a common cause with participation predic-
tors (as in Fig. 1a, c). AR only reduces bias in the absence 
of effect modification, or when the exposure does not cause 
or share a common cause with participation predictors (as 
in Fig. 1a). AR, DS/MRP cannot reduce selection bias when 
the exposure causes or shares a common cause with par-
ticipation predictors (as in Fig. 1b) because conditioning 
on a collider introduces bias [11]. One disadvantage of IPP 
weighting is that it relies on a correct specification of the 
selection model and sufficient data. Therefore, AR should 
be favored if it is certain that participation predictors do not 
predict or have a common cause with the exposure in the 
target population (as in Fig. 1a).

In sum, this article proposes to evaluate selection bias 
in two steps. First, assumptions about common causes in 
structural models of exposure-outcome association and 
study participation should be substantiated, for example 
with estimates of genetic correlations. Second, a lower 
bound of selection bias magnitude can be estimated by 
comparing association estimates from IPPW and non-
weighted analyses. In the remainder of the article we use 
associations between child and parental characteristics at 
birth and preschoolers’ Attention Deficit Hyperactivity 
Disorder (ADHD) symptoms at age three in the Norwegian 
Mother and Child Cohort Study (MoBa) as an example 
to demonstrate assessment of bias due to self-selection 
and loss to follow-up in a large prospective cohort study. 
We estimate the joint effects of self-selection and loss to 
follow-up by assessing bias in the study sample for which 
outcome data is available, because both biases are present 
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Fig. 1   Structural models of bias due to self-selection or loss to fol-
low-up in prospective cohort studies. A spurious association mani-
fests when participation P or participation predictors L are colliders 
on the path between exposure E and outcome D. P indicates condi-
tioning on P, which opens a collider, resulting in selection bias. a 
Depicts a situation where L and E are independent as long as there 
is no conditioning on P. Inverse probability of participation weight-
ing (IPPW), direct standardization (DS) and multilevel regression and 
post-stratification (MRP), or adjusting for L (AR) reduce this type of 
selection bias. b When E and L share an unobserved common cause, 
selection bias can only be reduced with IPPW. c Depicts bias due to 
effect modification, which can manifest in the absence of unobserved 
causes or conditioning on a collider. IPPW, DS, and MRP reduce this 
type of selection bias. a and b Modified from [4]
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in longitudinal studies. Note that in the remainder of the 
article “bias” refers exclusively to bias due to self-selec-
tion and loss to follow-up, and not to any other type of 
bias.

Methods

Target population and study sample

Study sample

MoBa is a prospective population-based pregnancy cohort 
study conducted by the Norwegian Institute of Public 
Health [20, 21]. Participating mothers from all over Nor-
way were recruited during routine ultrasound assessment 
in week 17 or 18 of their pregnancy in the period from 
1999 to 2009. 41% of the invited women consented to 
participation. The cohort now includes 114,500 chil-
dren, 95,200 mothers and 75,200 fathers. The current 
study is based on version 9 of the quality-assured data 
files released for research on October 2015. The reported 
analyses also use data from the Medical Birth Registry 
(MBRN), a national health registry containing information 
about all births in Norway [22].

The current analysis uses data from the main inclusion 
period from January 2001 to December 2009, in which 
94,373 mothers returned the first MoBa questionnaire 
around the 20th pregnancy week. Of these 55,763 (59%) 
also returned the 6th MoBa questionnaire (at child age 
3 years). Table 1 shows the bivariate distribution of mater-
nal age and education in the MoBa sample and the target 

population, i.e. women in Norway who gave birth in the 
sampling period.

Participation predictors: socioeconomic data 
about the target population

We obtained aggregated data about maternal age, educa-
tional level, and number of children for all women in the 
target population from Statistics Norway.

Statistical analysis

R scripts for all analysis steps are available at https​://githu​
b.com/gbiel​e/IPW/tree/maste​r/Analy​sisBI​PW.

A detailed description of the statistical methods is in the 
supplementary information.

Investigating unobserved common causes with LD score 
regression

We calculated genetic correlations between predictors of 
participation, exposures, and outcome from publicly avail-
able summary results of genome wide association studies 
(GWAS) using linkage disequilibrium (LD) score regres-
sions [15]. Table S2 lists maternal phenotypes for which 
we obtained GWAS summary statistics. Maternal genetic 
correlations also inform about common causes of maternal 
and child phenotypes because mothers and their children 
share 50% of their genes.

Table 1   Percent of mothers 
split by age and education 
in study sample (n = 54,557) 
and background population 
(n = 510,556), as well as 
coverage (% participation) of 
population subgroups in MoBa

Data for MoBa participants from MoBa and MBRN, population data from statistics Norway

Group Education < 20 20–24 25–29 30–34 35–39 40–49 All

MoBa Elementary 0.2 0.4 0.4 0.4 0.2 0.1 1.7
High-school 0.3 6.2 9.9 8.7 4.1 0.6 29.9
Bachelor 0 1.8 16.7 18.0 6.2 0.8 43.7
Master 0 0.0 6.0 12.8 5.3 0.6 24.7
All 0.6 8.4 33.1 39.9 15.9 2.1 100.0

Population Elementary 2 5.6 5.1 3.7 1.9 0.5 18.7
High-school 0.3 6.8 11.9 10.3 4.6 0.8 34.7
Bachelor 0 1.9 13.1 15.0 6.2 1.0 37.2
Master 0 0.0 1.9 4.7 2.3 0.4 9.3
All 2.3 14.4 32.0 33.7 15.0 2.5 100.0

Coverage Elementary 1.3 0.7 1.0 1.3 1.4 1.3 1.0
High-school 12.4 10.3 9.4 9.5 10.1 9.1 9.7
Bachelor – 10.6 14.4 13.5 11.4 9.3 13.2
Master – – 35.1 30.4 25.8 19.5 29.8
All 2.8 6.6 11.6 13.3 11.9 9.3 11.3

https://github.com/gbiele/IPW/tree/master/AnalysisBIPW
https://github.com/gbiele/IPW/tree/master/AnalysisBIPW
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Outcome, exposures, and adjustment variables

We calculated an ADHD symptom score by summing the 
responses (Not, Somewhat, or Very often true, coded as 0, 
1, 2) to 11 questions about ADHD symptoms that moth-
ers’ answered when the child was around 3 years old. Three 
separate analyses examined the magnitude of selection bias 
when estimating the association of preschoolers’ ADHD 
symptoms with (a) birth-related exposures, (b) parental use 
of legal drugs, and (c) parental mental health including use 
of illegal drugs.

Table 2 describes the variables used in the analyses. 
MoBa assessed parental mental health with short forms of 

the symptom checklist (SCL5, [23]), the lifetime history 
of depression questionnaire (LTH, [24]), and the ADHD 
Self-Report Scale (ASRS, [25]). MoBa measured use of 
illegal drugs (cannabis, ecstasy, amphetamines, cocaine; 
less than 0.01% indicated having used heroin) before or in 
the pregnancy with Likert scales. As a dimensional meas-
ure of illegal drug-use, we used ability scores from an item 
response theory analysis [26].

All presented analyses used participants for which at 
least 50% of the analysis variables were available. We 
created 20 multiply imputed data sets through multiple 
imputation by chained equations as implemented in the R 
package mi [27].

Table 2   Description of 
variables and their use

m. = maternal, p. = paternal, Q = MoBa questionnaires, Q1 = at pregnancy week 17, QF = for fathers’ (week 
20), Q6 = at child age 3, MBRN = Medical Birth Registry of Norway, SS = sum score. All continuous and 
count variables except parity scaled to a mean of zero and a standard deviation of one. I = used in IPPW 
model, A = AR model, U = UR model, IS in selection model for IPPWs calculation, not for adjustment in 
IPPW model

Type Variable Description Source Used in

Outcome
Child ADHD SS ADHD symptom ratings Q6 IAU

Exposures, birth-related
small f. gest. age 1 = among 5% lightest in gest. wk. MBRN IAU
preterm 1 = birth week <37 MBRN IAU
m. drug use Used any drug 1 = yes, no = 0 Q1 IAU
m. drug use score Ability score from IRT model Q1 IAU
m. LTH SS Lifetime History of Depression Q1 IAU
m. SCL5 SS Symptom Check list Q1 IAU
p. drug use Used any drug 1 = yes, no = 0 QF IAU

Exposures, parental use of legal drugs
p. drug use score Ability score from IRT model QF IAU
m. smoking Smoking in pregn.: 1 = yes, 0 = no Q1 IAU
m. num. cigarettes Cigarettes per day in pregnancy Q1 IAU
m. alc. freq. In pregnancy, 3 ordered categories Q1 IAU
m. eff. units. alc. effective units of alcohol Q1 IAU
p. smoking Smoking, 1 = yes, 0 = no QF IAU
p. num. cigarettes Cigarettes per day QF IAU
p. alc. freq. Drinking per week QF IAU
p. typ. units. alc. Typical number of units alcohol QF IAU

Adjustment variables
child sex 0 = boys, 1 = girls MBRN IA
m. BMI deviat. log (BMI/mode of BMI) Q1 IA
m. ADHD SS ASRS Q6 IA
p. ADHD SS ASRS QF IA
p. age 8 ordered categories QF IA
p. education 4 ordered categories QF IA

Participation predictors
m. education 4 ordered categories Q1 ISA
m. age 6 ordered categories Q1 ISA
Parity Number of children born MBRN ISA
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IPPWs and bias estimation

We calculated stabilized inverse probability weights using 
tabulated data about education, age and number of chil-
dren for all birth giving mothers in Norway in the sam-
pling period of MoBa. Because we rely on tabulated data, 
we used a binomial regression to estimate participation 
probabilities for population subgroups. We used a Bayes-
ian hierarchical regression with random intercepts and 
slopes for the effect of age in subgroups defined by educa-
tion and parity, in order to estimate effects of age also in 
small sub-groups reliably.

The estimation of a lower bound for bias involves esti-
mating an IPPW and alternative regression models. The 
IPPW model estimates weighted and adjusted exposure 
outcome associations. The AR model, following typical 
practice for the analysis of cohort studies, adjusts for par-
ticipation predictors instead of using IPPWs. The unad-
justed regression (UR) does no adjustment and uses no 
IPPWs (c.f. Tables 2 and S1). To account for covariation 
of regression weights, we fit the three models (IPPW, AR, 
UR) simultaneously in a Bayesian framework, and define 
regression weights for exposures in the AR and UR models 
as weights from the IPPW model plus a difference terms. 
Because ADHD sum scores are constraint between 0 and 
22, we used a beta binomial regression model and report 
associations as average marginal effects (AMEs).

Based on this analysis model, we calculated the lower 
bound bias estimate as the difference between AMEs 
from the IPPW and AR or UR models, respectively. We 
standardised the lower bound bias by dividing the differ-
ence with either the standard deviation or the mean of 
the posterior distribution of the IPPW estimate (c.f. [5, 
28]). The latter approach appeals to the intuition that bias 
is problematic if the comparison standard is known with 
high precision/certainty, whereas the former appeals to the 
intuition that bias is problematic if it has a large deviation 
from the comparison standard.

To test for bias, we check how much of the posterior 
distribution of the bias estimate lies within a region of 
practical equivalence (ROPE, dashed vertical lines in 
Fig. 3), i.e., a bias magnitude that is for practical pur-
poses equivalent to zero [29]. Here, we consider values of 
less than 0.5 standardised AME differences as practically 
equivalent with zero. To obtain a measure of risk for bias 
we calculate the log of the ratio of the posterior distribu-
tion inside and outside the ROPE, log(RRb). For example, 
a log(RRb) of − 1.6 (3) means that the lower bound bias 
estimate is five (20) times as likely to lie outside (inside) 
the ROPE.

Regression analyses were performed with custom mod-
els implemented in the probabilistic programming language 
Stan [30] and fit via RStan [31].

Results

Statistics Norway recorded 510,561 women who became 
mothers in the period from 2001 to 2009. In the same period, 
94,373 mothers returned the first MoBa questionnaire. Of 
these, 55,763 also returned the sixth questionnaire, which 
was sent out when children were 3 years old. 54,557 returned 
questionnaires with fewer than 50% missing data among the 
variables of interest. The study sample used for the reported 
analysis constitutes around 11% of the target population.

Socio‑demographic composition of study sample 
and population

Mothers with elementary school education or less consti-
tute around 18.7% of the target population and 1.7% of the 
MoBa sample (c.f. Table 1). 16.6% of mothers in the target 
population were younger than 25, compared to around 9.1% 
in the study sample. Accordingly, the participation rates 
vary between population subgroups: 29.7% of mothers in 
the target population with a master’s degree are in the study 
sample, and around 1% of mothers with elementary school 
education. For parity, the difference between study sample 
and target population is less pronounced. The percentages 
of women in the target population (study sample) who had 
previously 0, 1, 2, or 3 or more children are 41.8 (50.9), 
36.3 (32.5), 16.1 (13.9), 2.8 (5.8), respectively. Hence, the 
study sample over-represents mothers of firstborn children 
and under-represents those with more than two children.

Inverse probability weights

The hierarchical binomial model captured participation well, 
as indicated by a correlation of r = 0.99 between modelled 
and observed participation rates (see Fig. S5). Mothers’ 
education was the key variable to predict participation. Sta-
bilized weights ranged between on average 0.31 and 21.36. 
The largest weights were for mothers with only elementary 
school education, and the smallest for mothers with a mas-
ter’s degree. We chose not to trim extreme weights, because 
this would result in improper weighting of the study sample. 
While some weights are very large, the associated popula-
tion subgroups are typically represented with more than 100 
children in the study sample.

Unobserved common causes

Genetic correlation results shown in Fig. 2 indicate unob-
served common causes of participation predictors and out-
come or exposures, respectively. For example, genes associ-
ated with “age at first birth” or “years of education” are also 
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(negatively) associated with ADHD, maternal mental health, 
or smoking. The estimated SNP based genetic heritability of 
the investigate phenotypes is typically not high, and often 
below 10%.

Selection bias for exposure‑outcome associations

Figure 3 and Table 3 show AME estimates from an IPPW 
analysis (AMEIPPW), from an adjusted regression with-
out weighting that adjusts for participation predictors 
(AMEAR), and from an unadjusted regression (AMEUR). 
Results from the IPPW analysis show, consistent with the 
literature, that most risk factors were positively, albeit 
weakly, associated with the ADHD symptom sum score. 
Maternal smoking had the strongest association: Mothers 
who indicated that they smoked, reported on average an 
ADHD symptom sum score for their child that was around 
0.5 points higher (on a scale from 0 to 22) than mothers 
who indicated no smoking. Maternal drinking (frequency 

of alcohol use), maternal depressive symptoms (SCL5), 
and a low birth weight (small for gest. age) were also rela-
tively strongly associated with ADHD sum scores. Asso-
ciations with paternal variables other than drug use were 
generally weaker. 

We estimated a lower bound of selection bias as the dif-
ference between average marginal effects (AME) from the 
IPPW and AR or UR models, standardised by either the 
mean or the standard deviation of the IPPW estimates. Fig-
ure 3 and Tables 3 and S4 show the results. For the AR 
model, only mean-standardised bias estimates for maternal 
depressive symptoms (SCL5, log(RRb) = 4.5) and mater-
nal smoking in pregnancy (mSMOKE, log(RRb) = 4.6) are 
largely within the ROPE. Most bias estimates lie largely out-
side the ROPE. The risk ratio for having a bias larger than 
0.5 for the AR model is higher than 20 (i.e. log(RRb) < − 3) 
for 11 exposures when standardizing bias by the standard 
deviation of AMEIPPW and for 5 variables when standard-
izing by the mean of AMEIPPW (c.f. Table 3 and Figure S7).

Fig. 2   Genetic correlations as 
predictors of common unob-
served causes. h2

SNP  = SNP 
based genetic heritability 
from LD score regression. 
rG = genetic correlation between 
two traits based on LD score 
regression from publicly avail-
able GWAS summary statistics. 
Square colors indicate direction 
and size of correlations, the 
square size visualises z-values 
(which also depend on sample 
sizes). Gray square-outlines in 
the cells visualise the border to 
|z| = 4. The possibility of com-
mon causes of the participation 
predictor education the and 
outcome ADHD cannot be 
excluded. Education and some 
exposures like maternal depres-
sive symptoms or smoking also 
appear to have common causes. 
Table S3 lists all genetic corre-
lations and heritability estimates
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The results indicate both over- and under-estimation of 
associations in the AR analysis (e.g. frequency of maternal 
alcohol use and paternal drug use). IPPW and AR results 
also differ categorically, in that sometimes the IPPW 

results provide evidence for an association while the AR 
results do not (e.g. paternal drug use) and sometimes the 
opposite (paternal cigarettes per day).

Fig. 3   Exposure-outcome associations and bias. Left panel: 
AME = Average Marginal Effect for a one unit increase of the expo-
sure (all non-binary exposures z-standardised). Middle and right 
panel: δAR (δUR) are differences between estimates from  adjusted 
(unadjusted) IPPW regressions, standardised by mean (µIPPW) or 
standard deviation (σIPPW) of the IPPW estimates. To confirm the 

absence of bias, the 90% HDI should fall between the dashed verti-
cal lines, which enclose the region of practical equivalence with zero 
(ROPE). The ROPE contains standardised δs of less than 0.5. Bias 
estimates or HDIs outside the x-axis limits (− 7.5, + 5) are marked 
with < or > symbols
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Discussion

Bias due to self-selection into studies and loss to fol-
low-up is a threat to the validity of exposure-outcome 
association estimates from prospective cohort stud-
ies, because these often over-represent well educated, 
resourceful segments of the target population (Table 1, 
see also [3, 32, 33]). The structural approach to selec-
tion bias highlights that selection bias depends on the 
involved variables [4]. Therefore, it is not possible to 
evaluate selection bias generally for cohort studies that 
assess multiple exposures and outcomes. Among the sta-
tistical approaches to control bias, inverse probability of 
participation weighting (IPPW) is more generally able 
to correct bias than adjusted regression or direct stand-
ardization [4].

Using risk factor for ADHD as an example, we found 
that genetic correlations between participation predic-
tors, exposures and outcome indicate potential bias, when 
maternal education predicts study participation. The 
analysis of associations between risk factors and ADHD 
in MoBa revealed substantial differences between asso-
ciation estimates obtained with IPPW and those obtained 
with adjustment for participation predictors (AR) or no 
adjustment (UR). There were only few instances of clear 
evidence against the presence of bias due to self-selection 
and loss to follow-up.

The current study reports more evidence for the pres-
ence of bias due to self-selection and loss to follow-up than 
previous investigations of large prospective cohort studies 
[5, 6, 9, 34]. Whereas previous reports used association esti-
mates from the target population as a comparison standard 
for estimates from the study sample, this study used IPPW 
estimates. The validity of IPPW estimates as comparison 
standard depends on how well participation predictors pre-
dict participation [19]. In our study, the selection model 
predicted participation well. Another potential explanation 
for the stronger evidence for bias in our study is that bias 
in study samples at the onset of cohort studies is smaller 
because participation rates are higher. Further, because the 
heritability of ADHD is estimated to be higher compared to 
birth-related outcomes (c.f. Fig. 2 and [35]), selection bias 
due to common unobserved causes of participation predic-
tors and outcome is expected to be larger for ADHD. Indeed, 
the strongest evidence for bias from earlier investigations 
comes from the association between maternal smoking and 
child ADHD [9]. Lastly, whereas previous studies evaluated 
bias by testing for a significant difference between sample 
and population estimates, equivalence testing [29, 36] is 
the proper approach to test if two association estimates are 
equal. Therefore, previous reports provided little statistical 
evidence for the absence of bias.

While the presented results indicate the presence of 
bias, one could reason that this is largely inconsequen-
tial, because the weighted and un-weighted association 
estimates typically point in the same direction. However, 
it is also important to recognise that in some cases the 
weighted and unweighted analyses led to categorically dif-
ferent conclusions. Crucially, in translational research, the 
magnitude of an association is important, so that not only 
non-detection of effects, but also errors in the estimation 
of effect sizes are problematic [37].

Conclusions about the presence or seriousness of bias can 
depend on how bias estimates are standardised or by how 
wide the ROPE is. Typically, bias estimates are standardised 
by the standard deviation of the unbiased parameter estimate 
[28], which we here replaced with the standard deviation of 
the corrected (IPPW) estimate. Similar to Nilsen et al. [5] 
we also estimated the percent deviation from the comparison 
standard, and found that this mean-standardised bias esti-
mate was generally smaller. It is difficult to determine gen-
erally how large a bias is problematic. This should depend 
on the subject matter. We defined standardised deviations 
of less than 50% as practically equivalent with zero, which 
is considered to be a large effect [38], and still found clear 
evidence for bias.

Earlier assessments of bias in cohort studies that com-
pared association estimates from study sample and target 
population are elegant in that their validity does not depend 
on assumptions about the causal relationship of exposure, 
outcome, and participation predictors. However, if popu-
lation data about exposure and outcome are available, 
exposure-outcome associations need not be estimated from 
smaller study samples, and estimation of selection bias is 
superfluous. Using results from an IPPW regression as com-
parison standard rests on the assumption that the weighted 
study sample is a good representation of the target popula-
tion, which is only the case if participation can be predicted 
well [19]. We found a high correspondence between pre-
dicted and observed participation rates, which suggests that 
the weighted MoBa sample represents the target population 
well. To verify that this test of the assumption is falsifiable, 
one can hypothesise a scenario that would have resulted 
in a violation. For example, if participation also strongly 
depended on maternal birth month, a selection model that 
uses only socio-demographic predictors would not predict 
participation well. Still, when calculating participation prob-
abilities for population sub-groups, it remains possible that 
some bias results from within-group selection-bias, if there 
exist unmeasured participation predictors, that are independ-
ent of the measured predictors. This appears unlikely in the 
current analysis, because the key participation predictor edu-
cation is strongly associated with unmeasured predictors like 
mental health.
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The reliability of IPPW estimates also depends on the 
number of study-participants in population subgroups, espe-
cially if only few members of large population sub-groups 
participate in a study. However the low reliability of IPPW 
estimates in such circumstances, may indicate a weaknesses 
of the sampling strategy emploed for a study rather than a 
weakness of the IPPW. The IPPWs discussed in the current 
research are appropriate for relatively simple studies without 
time varying treatments or time to event analysis. For studies 
with such characteristics, more advanced weighting schemes 
like inverse probability of censoring weights (IPCW [39]) 
need to be employed.

While IPPW can remove bias due to self-selection and 
loss to follow-up, it cannot remove bias from unmeasured 
confounders. This is reflected in our finding of an associa-
tion between maternal smoking and ADHD, which is likely 
due to familial genetic or environmental confounders [40]. 
It is important to emphasise that other biases than bias due 
to self-selection and loss to follow-up can still be present in 
estimates obtained with IPPW.

Structural analysis highlights that selection bias depends 
specifically on the involved variables, such that the presence 
or amount of bias for one association does not generalise 
to other associations. A first condition for selection bias to 
emerge is the presence of common unobserved causes of 
participation predictors, like education, and the outcome. A 
second condition is a direct or indirect causal relationship 
between participation predictors and the exposure. Figure 2 
shows that genes (or associated environmental characteris-
tics) can be common unobserved causes of mental health 
outcomes and the participation predictor education, and of 
education and exposures like smoking. It is therefore prob-
able that non-weighted estimates of associations between 
e.g. maternal mental health, smoking or drinking behavior, 
and mental health related outcomes are biased in studies that 
over-represent certain educational groups. Still, the actual 
presence and magnitude of bias in such studies has to be 
examined on a case by case basis.

Structural analysis using directed acyclic graphs (DAGs) 
is a useful tool for the development of analysis strategies that 
remains underused. A practical argument against the use of 
DAGs is the uncertainty about hypothesised causal relation-
ships. We proposed to use genetic correlation coefficients 
from LD score regression of publicly available GWAS sum-
mary statistics as one possibility to substantiate assumptions 
about unobserved common causes. The main motivation to 
focus on common genetic causes is the growing availability 
of GWAS summary statistics and methodological advances 
allowing estimation of heritability and genetic correlation 
coefficients from such statistics [15, 16]. Because GWAS 
studies are association studies, they do not provide unam-
biguous proof for a causal role of genes. Even if GWAS 
estimates are partly driven by environmental factors, genetic 

correlation estimates from GWAS summary statistics are 
of interest, because common unobserved environmental 
causes also contribute to the manifestation of selection 
bias. If direct estimates of common environmental causes 
are available, they should also be used for evaluating DAGs. 
Finally, the analysis of implied conditional independencies 
from competing causal models also allows examination 
of hypothesized causal relationships. As described in the 
supplementary discussion, such an analysis shows that the 
data analysed here are not consistent with a causal model in 
which exposure and participation predictors are independent 
in the target population (as in Fig. 1a).

A second challenge when using structural models is the 
difficulty of formulating DAGs for complex causal models 
[41]. When judging the presence of bias due to self-selection 
and loss to follow-up, a simple decision tree can supplant 
the formulation of a complete DAG, so that researchers can 
determine the potential for selection bias by answering a 
sequence of questions about the relationship of participation 
predictors, exposures, and outcomes. Figure 4 shows a deci-
sion tree that identifies when correction for bias is necessary, 
and what correction method can be used.

A topic closely related to selection bias is that of repre-
sentativeness. While it was argued that representativeness 
can be detrimental to scientific inference, because under-
standing of mechanisms and careful control of relevant vari-
ables are central for this aim [42], others have emphasised 
the importance of representativeness—understood as the 
availability of weights for calculating valid population esti-
mates [43]. Careful experimentation based on hypothesised 
mechanisms is undoubtedly central to scientific progress. 
Still, this approach does not describe the often-explora-
tory analyses of cohort study data well. Moreover, if one 
understands causal inference as the central goal of scien-
tific inquiry, ignoring non-representativeness of unweighted 
study samples does not only undermine generalization to the 
population of interest, but can also lead to incorrect scien-
tific inferences by facilitating the false discovery of associa-
tions, or prevent the detection of existing associations.

In conclusion, self-selection into cohort studies and 
loss to follow-up can lead to biased estimates of exposure-
outcome associations from large population based cohort 
studies. Structural analysis and empirical results suggest 
that especially for mental health related exposures and out-
comes selection bias is likely. Still, the dependency of bias 
on the specific outcome, exposure, and study participation 
predictors makes general statements about selection bias for 
multi-exposure multi-outcome studies impossible. Instead, 
each investigation of an exposure-outcome association has to 
assess selection bias. If bias is likely and valid participation 
predictors are available, weighting study participants by the 
inverse of their participation probability is a robust approach 
to control bias due to self-selection and loss to follow-up.
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Fig. 4   Decision tree for iden-
tification of selection bias and 
choice of approach to correct it. 
See Fig. 1 for causal diagrams 
that underlie the decision tree. 
To determine if selection bias is 
likely, and if so which correc-
tion method can be used, pro-
ceed through the questions from 
the top on. Ending in a node 
“Bias is unlikely” implies that 
an analysis without correction 
for selection bias likely results 
in estimates without selection 
bias. Otherwise, different cor-
rection methods can be used, 
depending on the underlying 
causal structure. IPPW stands 
for analysis with inverse proba-
bility of participation weighting, 
AR for adjusted regression. For 
reasons of brevity, this decision 
tree does not isolate cases where 
direct standardization (DS) 
or multilevel regression and 
post stratification (MRP) can 
correct bias
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